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Summary. We describe spin-projected Extended Hartree-Fock calculations, per- 
formed with a Valence Bond Self-Consistent Field program. Potential energy 
curves are given for BH, Bell, and N2. For BH the EHF function ranks well 
with the corresponding Spin-coupled and full CI wave functions. For Bell, the 
EHF function introduces spin contamination in the separated Be atom due to 
the rigidity of the wave function. This results in an inferior potential energy 
curve compared to Spin-coupled and full CI. The triple bond breaking in N 2 is 
again nicely described by EHF. The Extended Hartree-Fock method as sug- 
gested by L6wdin can be a feasible tool in describing bond breaking. 
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1. Introduction 

The customary Hartree-Fock methods (RHF, UHF) possess the attractive 
quality that they present a simple physical model. These methods generally 
approximate the wave function by a single Slater determinant, which is the 
simplest function based on the independent-particle model with the correct 
symmetry [ 1]. Thus one has the opportunity to visualise the wave function in 
terms of orbitals, which is something sadly missed in more refined methods. 
There is a price to pay for this approach. Both the RHF and the UHF scheme 
have well-known inadequacies, amongst others: the RHF method fails to take 
into account properly the correlation between particles with different spins and 
the UHF method results in a wave function that is generally not~ a spin 
eigenfunction [2]. 

L6wdin [1] proposed the Extended Hartree-Fock (EHF) method to remedy 
these shortcomings, while preserving the physical simplicity of the ordinary HF 
methods. In the EHF method the wave function is a single Slater determinant 
projected to the desired symmetry. L6wdin [1] suggested a very elegant and 
general projection operator to accomplish this. As L6wdin saw it, the projection 
operator and the Slater determinant form a single conceptual entity [3]. The 
connection with the independent-particle model remains through the Hartree 
product. The most widely known form of the method is the spin-projected EHF 
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method: the wave function is projected to the desired spin symmetry only. As in 
the UHF method, the restriction of doubly occupied spatial orbitals is not 

~adhered to. In principle, the spin orbitals can be quite general, but for sake of 
simplicity they are mostly chosen to have pure alpha or beta spin [4]. The motive 
for this so-called different orbitals for different spins (DODS) idea is, quoting 
Etwdin [1]: "This new degree of freedom may now also be used for including 
correlation effects, since we may choose the two sets of orbitals associated with 
different spin functions in such a way that they let particles with different spins 
try to avoid each other". 

In the EHF method the projected wave function is optimised variationally. A 
projection after the variational optimisation of the wave function usually gives 
an improvement in the energy too, but yields a rather poor potential energy 
surface that shows discontinuities [5]. 

The EHF method is conceptually simple, but never became very popular due 
to the complexity of the EHF equations [6, 7]. The amount of correlation energy 
that can be captured turned out to be less than expected [3]. High percentages 
(95%) are only reported for two-electron systems [8]. Mayer has written an 
extensive review article on the subject [8]. He considered the EHF method at the 
ab initio level to be best suited for the description of stretching and breaking of 
~ingle bonds [5]. r 

In this article we explore the EHF method by way of a Valence Bond (VB) 
approach. We show that EHF calculations can be done with a flexible VB 
program and shortly describe the program we use. For the dissociation of the 
singly bonded BH molecule and the Bell radical, we compare the performance 
of the EHF method to the Spin-coupled method [9] and the full CI approach. 
Finally we consider the dissociation of N2 to show the capability of the EHF 
method to describe multiple bond breaking [8]. 

2. EHF and VB 

A general one-configuration VB wave function is built of non-orthogonal 
orbitals (~b) and can be written as: 

~vB = ~ Ck TSk = ~', CkAO1. . . (aNO(U, S, M; k) (1) 
k k 

where A is the antisymmetrizer, and O(N, S, M; k) is an N-electron spin eigen- 
function with eigenvalues S and M to S 2 and Sz, respectively. The configuration 
state functions kv k are also called structures. In modern VB calculations both the 
orbitals and the variational coefficients Ck are optimised. The dimension of ~gvB 
can be reduced if some structures are omitted, e.g. some spatial (core) orbitals 
are occupied twice. This becomes almost unavoidable in case of many electrons, 
because the number of independent structures grows very rapidly with the 
number of electrons [ 10]. 

One may distinguish two kinds of one-configuration Valence Bond ap- 
proaches. 

(a) In the Spin-coupled method [11] all the spin-couplings between the singly 
occupied orbitals of a one-configuration wave function are allowed for. As a 
result the method may describe any molecular dissociation process correctly. The 
singly occupied orbitals which result from a Spin-coupled calculation are 
uniquely defined and usually have a localised character. 
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(b) In the Generalised Valence Bond (GVB) method [12] in its usual form the 
non-orthogonality appears within pairs of orbitals only (strong orthogonality 
constraint). Mostly only one (perfect-pairing) structure is taken. This is sufficient 
for simple dissociation processes (one electron-pair bond). 

Using the spin projection operator (Os) [1], the EHF wave function can be 
written as the projection of a single Slater determinant (~o) to the desired spin 
state (S): 

[S 2 - L(L + 1)l 
VEHF = OS~IIo : L~SU [ S ( S ~  1 ) - = Z ( - L ~  1)1 vO (2) 

Although Eq. (2) is a very elegant expression, it is not easy to handle in case 
of many electrons. For other expressions and many properties see Pauncz 
[10, 13]. 

Starting from a one determinant ~o that is already an eigenfunction of Sz 
with eigenvalues M = S (the so-called principal case) and placing all # orbitals 
that have alpha spin in the Hartree product first, the EHF wave function can be 
written as [10, 13]: 

2S + 1 
~EHF = OS [(~1 • • • (~/t 1~/~ ~ 1 ' ' "  q~N [ = 4 ~ -  A(~I " " " ~)NO(N' S, S;1) (3) 

where O(N, S, S;1) is the branching-diagram function belonging to the highest 
spin path (i.e. the first one, if they are ordered according to the last-letter 
sequence [10]; cf. Fig. 3). This branching-diagram function can be interpreted as 
follows: first, all spin orbitals that have the same spin in the Hartree product are 
coupled together to the state of maximum multiplicity, next, these two subsys- 
tems are coupled to the desired spin state. 

Comparison of Eqs. (1) and (3) suggests that the EHF wave function can be 
viewed as a VB wave function consisting of one special structure. The most 
compact way to expres s the EHF wave function in terms of structures asks for 
an ordering of the orbitals as in Eq. (3). If orbitals that have different spins in 
the Hartree product are exchanged, the EHF wave function becomes a fixed 
combination of several structures [10, 13]. Note that Eq. (3) is still usable if the 
starting determinant contains doubly occupied orbitals; # and N then refer to the 
singly occupied orbitals only. 

The EHF orbitals do inherit properties of the parent UHF wave function: 
orbitals that have the same spin before the projection may be made orthogonal 
to each other without loss of generality. Also, Amos and Hall [14] showed that 
the orbitals belonging to the different subsets can be transformed in such a way 
that they become biorthogonal (the pairing theorem). Due to their localised 
nature the paired orbitals are easily identified. 

Smeyers et al. [15, 16] proposed a method related to EHF. Their omega 
function is obtained by a different spin projection operator, which has to be 
applied to a Hartree product of spin orbitals, followed by antisymmetrization (in 
that order, their projection operator does not commute with the antisym- 
metrizer). This results in a structure corresponding to the lowest spin path, which 
is for many purposes a good choice. We do not consider it here however, because 
it is not an EHF wave function in the original sense of the word, for it cannot 
be written as a projection of a single Slater determinant. 
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3. Method of calculation 

The fact that the EHF wave function is a special case of a one-configuration VB 
function, implies that the EHF orbitals can be determined by a general VB 
program, that is capable of orbital optimisation. No additional programming 
effort is required. Using branching-diagram spin functions, the EHF wave 
function may be expressed as just one special structure, i.e. the structure with the 
highest spin path. 

For all EHF and VB calculations we used the Valence Bond Self-Consistent 
Field (VBSCF [17, 18]) program TURTLE [19, 20]. We do not have to distin- 
guish between even and odd number of electrons (cf. Mayer [8]). 

The calculation of the non-orthogonal matrix elements is done using the 
generalised Slater-Condon rules [21] that are based on L6wdin's [22] general 
formula for matrix elements. 

The orbital optimisation is based on the generalised Brillouin theorem [23] 
using the Super CI algorithm [24, 25]. Briefly: singly excited Brillouin states are 
formed by exciting orbitals of the reference wave function to a set of singly 
occupied and virtual orbitals [20]. A (non-orthogonal) CI calculation is per- 
formed with these Brillouin states and the corresponding coefficients are used in 
the subsequent orbital transformation. The process is repeated until convergence. 

Due to the special form of the EHF wave function, Brillouin states resulting 
from excitations within the subsets of orbitals with the same spin in the Hartree 
product vanish. We did not exploit the pairing theorem. 

The spatial parts of the corresponding singly occupied orbitals of opposite 
spin, become strongly non-orthogonal in the EHF calculations. If  they are used 
to form Brillouin states as described above, the resulting non-orthogonal CI, that 
yields the orbital transformation coefficients, becomes nearly dependent, result- 
ing in large CI coefficients. This may seriously hamper convergence. Therefore 
excitations to these orbitals were excluded in the EHF calculations, and the 
alpha and beta set orbitals were given their own realisation o f  the virtual space 
[20]. In our current preliminary implementation this doubles the size of the basis 
in the calculation. The convergence behaviour then is satisfactory: some 10 
iterations for an accuracy of 10 -8 Hartree in the energy. 

This trick is not usable in the Spin-coupled calculations, since it would make 
the orbital basis excessively large: all active orbitals would need their own virtual 
space. Consequently, our Spin-coupled calculations required many iterations. It 
is therefore not useful within the present context to compare timings. We note that 
the EHF function contains all determinants present in the Spin-coupled function, 
so that in the basis of determinants both methods require the evaluation of the 
same matrix elements. However the orthogonalisations allowed by the special 
nature of the EHF function, may be exploited to make the EHF calculation much 
more economical, using the generalised Slater-Condon rules [21]. 

We used a DZP basis set, based on a van Duijneveldt [26] Gaussian basis set 
augmented with polarisation functions [27] and contracted to (4sp)/[2sp] for H 
and (9s5pd)/[4s2pd] for Be (~a = 0.255), B (~a = 0.70) and N (~a = 0.80). Carte- 
sian d functions were used. As a reference serve full CI calculations (for 
BH, Bell), which were done with GAMESS [28]. 

We did not use projection operators to select the desired spatial symmetry of 
the wave function. The 2; + symmetry was achieved by restricting the basis in 
which the orbitals were expanded to orbitals of a-symmetry. In N2 the gerade 
symmetry was imposed. 
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4. Results and discussion 

4.1. B H  

The best potential energy curves for each method, with no orbitals restricted to 
be doubly occupied, are given in Fig. 1. All curves run quite parallel and the 
EHF and Spin-coupled curve give almost the same equilibrium distance, 2.42 
and 2.41 Bohr, respectively. The full CI curve lies considerably lower and gives 
a shorter equilibrium distance of 2.37 Bohr. 

The total energies at 2.5 Bohr are - 25.139544, - 25.154075 and - 25.214908 
Hartree respectively for the EHF, Spin-coupled and full CI approaches. From 
this we can deduce binding energies at 2.5 Bohr of 288.8 kJ/mol, 299.3 kJ/mol 
and 324.3 kJ/mol, respectively. 

The penalty on occupying the ls core orbital twice is very small in EHF: 
maximal 0.13 mHartree (at 1.75 Bohr). It simplifies the calculation considerably, 
for the EHF wave function now consists of six instead of twenty determinants. 
For the Spin-coupled calculation, the rise in the total energy is not negligible, but 
constant: 10 mHartree over the whole range. If  the 2s is also doubly occupied, 
the Spin-soupled and the EHF wave function coincide to a two-determinant 
GVB wave function. The energy curve rises another 6 to 8 mHartree (compared 
to the Spin-coupled curve). The binding energy at 2.5 Bohr is calculated at 
295.3 kJ/mol. 

At the dissociation limit the boron orbitals resulting from the EHF and 
Spin-coupled calculations are not pure s- and p-orbitals. The EHF and Spin- 
coupled calculations with all orbitals singly occupied gain 5.5 and 3.5 mHartree, 
respectively, by this symmetry breaking. The total wave function was consistently 
of Z ÷ symmetry. 

4.2. Be l l  

The potential energy curves obtained with EHF, Spin-coupled and full CI are 
given in Fig. 2. In this case the EHF and Spin-coupled curves differ more 
substantially, the Spin-coupled curve being much closer to the full CI. Again the 
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equilibrium geometries differ very little between EHF and Spin-coupled 
(2.65 Bohr and 2.66 Bohr respectively), whereas the full CI predicts a shorter 
distance (2.62Bohr). The total energies at 2.5Bohr are -15.149776, 
-15.172055 and -15.197804 Hartree for EHF, Spin-coupled and full CI 
respectively. From these numbers we calculate dissociation energies (Ezso - E~) 
of 187.1 kJ/mol for EHF, 191.6 kJ/mol for Spin-coupled and 186.1 kJ/mol for 
full CI, again showing the EHF to produce very similar results to the Spin- 
coupled method, and surprisingly close to full CI. 

As observed in the BH calculations, the Be atomic orbitals show symmetry 
breaking at infinite separation. 

The Spin-coupled curve shows a slight barrier in the total energy in between 
the minimum and the dissociation limit, which is not found in the EHF 
calculation. This barrier is also found in previous Spin-coupled calculations [29] 
and is confirmed by our full CI calculations. The failure of the EHF method to 
reproduce this barrier may be explained by the fact that the Be atomic wave 
function is not a pure singlet spin state at infinite internuclear distance, but 
suffers some triplet contamination. This causes the curve to rise too steeply at 
larger internuclear distances (see Fig. 2). 

The triplet contamination is easy to see by rearranging [13, 30] the orbitals in 
the EHF wave function (h corresponds to the hydrogen ls) and giving the wave 
function in terms of branching-diagram functions in Fig. 3. 

Only the fourth and fifth branching-diagram function describe a singlet Be 
atom. In the EHF function the coefficients of the branching-diagram functions 
are fixed, since it is one special CSF. In the Spin-coupled wave function the 
coefficients of the triplet contributions may be varied and thus be eliminated at 
infinite internuclear distance. 

4.3. N2 

The EHF N2 wave function with all orbitals singly occupied contains 3432 
determinants. For both the EHF and the Spin-coupled calculations, we choose 
to keep the ls and 2s doubly occupied, resulting in twenty determinants. The 
potential energy curves are given in Fig. 4. The curves are very similar. The 
equilibrium distance is, respectively, 2.10 and 2.12Bohr. The energies at 
2.1 Bohr are -109.027831 and -109.044583 Hartree for EHF and Spin- 
coupled respectively. At this distance the binding energies are 622.1 and 
666.1 kJ/mol. 
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Fig. 3. The Extended 
Hartree-Fock function for Bell 
in terms of branching-diagrams 
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The  E H F  spin-coupl ing scheme is well suited for this molecule:  the two 
subsystems o f  m a x i m u m  mul t ip l ic i ty  now co r re spond  to the valence electrons o f  
the two n i t rogen  a toms.  Both  models  lead to p rope r  d issocia t ion  to the separa te  
4S N a toms  and yield in fact  ident ical  wave funct ions for  an  infinite d is tance  
between the n i t rogen  a toms.  

5. Conclusions 

W e  show tha t  Ex tended  H a r t r e e - F o c k  wave funct ions m a y  be rout ine ly  ob-  
ta ined,  using a general  Valence Bond  p rog ram,  wi th  orb i ta l  op t imisa t ion .  

The  E H F  m e t h o d  is capable  o f  descr ibing the d issoc ia t ion  o f  bonds  in 
wel l -chosen systems. 

In  the case o f  Be l l ,  the separa ted  Be a t o m  is no t  a pure  spin state in the E H F  
model .  This d r a w b a c k  is absent  in the Spin-coupled  wave funct ion.  

Both  the E H F  and  the Spin-coupled  a p p r o a c h  d isp lay  symmet ry  b reak ing  in 
the separa ted  atoms.  
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